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The chick chorio-allantoic membrane (CAM) contains a complex vascular network 

commonly used to study angiogenesis.  The application of chemical factors and oxygen 

barrier films onto this tissue can easily influence the process of angiogenesis.  In this study, 

oxygen barrier film patches (Krehalon, polyvinylidene chloride, 12 μm thick, O2 

transmission rate = 2.19 cm
3
·ml/100 in

2
·day·atm) were applied to areas of the CAM.  

Holes were made in the film and alginate beads incubated in various chemical factors were 

placed in the holes.  After 24 and 48 hours of exposure to the alginate beads, images were 
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taken of the tissue using a stereomicroscope and then processed using ImageJ software 

(from the National Institue of Health (NIH)).  The images were analyzed with the Fractal 

Analysis plugin of ImageJ (also from NIH) using four parameters.  These parameters are 

the number of vessel segments, the number of vessel bifurcations, the total length of the 

vessels, and the complexity of the vascular network.  From these parameters, the chemical 

factors can be identified as promoting angiogenesis (pro-angiogenic), inhibiting 

angiogenesis (anti-angiogenic), or having no effect on angiogenesis (not angiogenic).  For 

the angiogenic beads, significant results were found in at least one of the four parameters.  

SNAP and H2O2 gave pro-angiogenic responses while Angiotensin II, Losartan, and 

Adenosine were anti-angiogenic.  To test the effect of an oxygen barrier film patch on 

angiogenesis, images were taken of the tissue under the film patch (virtual holes) and holes 

exposed to atmospheric oxygen.  Analysis of the virtual holes compared to the control 

holes gave significant results for several of the film patches.  These film patches are 

distinguished by the chemical that was tested on each of the films.  The virtual holes 

containing Angiotensin II, Losartan, Adenosine, and H2O2 gave pro-angiogenic results 

while SNAP and L-NAME virtual holes were anti-angiogenic.  Thus, the chemical factors 

and the oxygen barrier film patches did have an effect on angiogenesis in the CAM. 
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INTRODUCTION 
 

Overview of the Cardiovascular System 

 The cardiovascular system is made up of three major components:  the heart, blood, 

and blood vessels.  The heart pumps blood through blood vessels to supply the body with 

nutrients such as oxygen (O2) and to get rid of wastes like carbon dioxide (CO2).  

Deoxygenated blood enters the pulmonary circuit from the right side of the heart and this 

blood enters the lungs where CO2 is released from and O2 is taken up by the blood.  The 

oxygenated blood is then pumped through the systemic circuit by the left ventricle of the 

heart.  This blood supplies O2 to the body and transports CO2 and other wastes back to the 

heart where the cycle repeats.  Figure 1 shows a diagram of this cycle. 

 

 

Angiogenesis 

 The formation of the blood vessels of the cardiovascular system is called 

angiogenesis.  The way in which these blood vessels form is unique and complex.  Blood 

vessels grow in response to chemicals in their immediate environment.  Some chemicals 

are pro-angiogenic, promoting blood vessel growth, while others are anti-angiogenic, 

inhibiting blood vessel growth.  Depending on which chemicals are present, blood vessels 

will lengthen and bifurcate into a distinct pattern. 
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Figure 1. Diagram of Pulmonary and Systemic Circuit of Blood Flow (modified from 

http://leavingbio.net/CIRCULATORY%20SYSTEM/CIRCULATORY%20SYSTEM. htm) 
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The dynamic process of angiogenesis continues throughout life.  Stimulating 

angiogenesis can have therapeutic value in a number of diseases such as ischemic heart 

disease or in wound healing.  Excess or uncontrolled angiogenesis can also be detrimental 

to the body by contributing to diseases such as retinopathy or by facilitating tumor growth 

(Carmeliet 2003, Carmeliet 2005).  Drugs that promote or inhibit angiogenesis are 

currently being developed, especially those that can be used in cancer treatments (Folkman 

2007). 

The mechanism of angiogenesis is well studied.  According to Adair and Montani 

(2011), in sprouting angiogenesis, the tip of a developing capillary will move through the 

extracellular matrix towards a pro-angiogenic chemical such as VEGF (Vascular 

Endothelial Growth Factor), see Figure 2.  The cell on the tip of the developing capillary, a 

tip cell, secretes proteolytic enzymes to digest the extracellular matrix so that the capillary 

can move through it.  VEGF receptors are present on the filopodia of the tip cells so that 

the tip cells can distinguish differences in the concentration of VEGF and follow along the 

highest gradient of VEGF.  Actin filaments in the filopodia pull the tip cell towards the 

VEGF as the endothelial stalk cells proliferate, elongating the capillary.  The tip cells of 

two or more capillaries converge and fuse together to create a lumen through which blood 

can flow.  Microvascular pericytes are then recruited to the site to stabilize the maturing 

capillary. 

 The VEGF concentration gradient is crucial for tip cell migration and stalk cell 

proliferation.  As shown in Figure 3, there is not only a gradient for VEGF but also a 

gradient of the VEGF receptor (VEGFR2).  There are more VEGF receptors on the tip  
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Figure 2.  Mechanism of Angiogenesis (Adair and Montani 2011). 
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Figure 3. VEGF Receptor (VEGFR2) Gradient (Adair and Montani 2011). 
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cells than on the stalk cells so that the tip cells can respond to the high concentration of 

VEGF that they are migrating towards.  Delta-Notch signaling also occurs.  This ligand-

receptor interaction only occurs when the cells are in direct contact.  Delta is produced in 

tip cells and finds its receptor, Notch, in the stalk cells.  The activation of Notch then 

induces proteolysis of one of Notch’s domains.  This domain can then move into the 

nucleus to suppress expression of the VEGF receptor in the stalk cell.  Migration of the 

stalk cells is then prevented. 

 Another recently discovered form of angiogenesis is termed intussusceptive or 

splitting angiogenesis as described in Adair and Montani (2011).  Its mechanism is not 

completely understood, although it is known that it involves the splitting of existing blood 

vessels to form new blood vessels.  The vessel wall extends into the lumen causing the 

single vessel to split into two vessels forming artery and vein bifurcations (Adair and 

Montani 2011). 

 

 

Chorio-Allantoic Membrane (CAM) 

 The chorio-allantoic membrane (CAM) of a developing chick embryo has been 

widely used as a model system for in vivo research on angiogenesis (Auerbach et al. 2003, 

Ribatti et al. 1996, Ribatti 2012, Zijlstra et al. 2006).  Use of the CAM preparation is a 

simple, reproducible, reliable, and low cost approach to investigate the growth of blood 

vessels.  The CAM of the developing chick embryo is easily accessible and can be 

manipulated once the shell of the egg has been broken.  Many changes occur in the embryo 
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over the course of only a few days.  These morphological and functional changes can 

easily be evaluated.  The dense capillary network of the CAM is an ideal model to visually 

observe and track angiogenesis.  Recently, the chick CAM has been used to look at 

angiogenesis in tumors (Deryugina and Quigley 2008) and also as an indicator of anti- or 

pro-angiogenic properties of chemicals (Deryugina and Quigley 2008). 

 However, there are some disadvantages in using the CAM to study angiogenesis.  

Since the embryo is developing at a rapid rate during the early stages of its incubation, it is 

difficult to distinguish the effects of test substances on the CAM from that of real 

neovascularization.  Also, existing vessels may change their orientation or location as the 

CAM develops (Ribatti 2012).  Because of this, it is important to establish control sites in 

the vasculature that can be evaluated without influence from the substances being tested. 

 The CAM is essential for viability of the developing chick embryo.  The CAM first 

becomes visible on day six of incubation and continues to grow as the chick develops.  The 

rich vascular network of the CAM mainly functions as a gas exchange organ for the 

developing embryo.  The CAM develops against the shell so that it is in close contact with 

the external environment through pores in the shell.  Because of its location, the CAM can 

provide O2 to the embryo and remove excess CO2 by diffusion through the pores of the 

shell.  The CAM can also provide calcium ions to the embryo by absorbing calcium from 

the shell and transporting it through the bloodstream.  It also functions as a reservoir for 

excretory products such as urea, uric acid, and ammonia.  After the chick hatches, the 

CAM is left attached to the shell (Bellairs and Osmond 2005). 
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Ex ovo model of the CAM 

Two main approaches exist for using the CAM as a model system.  An in-shell 

approach is used when only a portion of the developing embryo is needed.  Only part of 

the shell is removed and the embryo is left to develop inside the shell.  Tissue graft 

experiments typically use this in-shell model (Zijlstra et al. 2006).  The shell-less or ex vivo 

model can be used when it is necessary to manipulate a larger part of the embryo during 

the course of the experiment (Auerbach et al. 1974, Dohle et al. 2009, Fisher 1993, Palen 

and Thorneby 1975).  The entire embryo is removed from the shell and left to develop ex 

ovo.  Without the shell, the developing embryo has no protection from the outside 

environment so it is more prone to bacterial contamination and hyperoxic conditions.  

Long-term viability is low.  Even with these disadvantages, the ex ovo model is used 

extensively because the embryo can be manipulated (Auerbach et al. 2003, Jeong et al. 

2011, Magalhaes et al. 2010). 

 

 

Chick Circulation 

 Chick red blood cells (RBCs) are different from human red blood cells in that they 

are much larger and their nucleus remains after they have matured.  In chick embryos, 

primitive RBCs which express primitive hemoglobin are present until day six of 

development when definitive RBCs can be found.  Definitive RBCs express adult 

hemoglobin.  Embryonic blood contains different types of primitive and adult hemoglobin 

with different oxygen binding properties (primitive hemoglobin has a lower oxygen 
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binding affinity than adult hemoglobin).  It is not known what determines when the 

embryo switches from embryonic hemoglobin expression to adult hemoglobin expression.  

Evidence indicates that nuclear transcription factors may regulate the switch or the change 

could be in response to ambient oxygen pressure changes (Baumann and Meuer 1992). 

Hematopoiesis occurs in the yolk sac of the embryo throughout its development 

(bone marrow hematopoiesis is established late in development).  The yolk sac grows over 

the surface of the yolk and blood vessels develop connecting the yolk sac with the heart of 

the embryo.  Blood cells first begin to circulate on day two of incubation, driven by a 

primitive U-shaped heart.  The heart pumps the blood cells through arteries that supply 

both the vitelline and the allantoic circulation.  The vitelline circulation is responsible for 

supplying nutrients from the yolk to the developing embryo and, up to day six of 

incubation, it functions as the respiratory gas exchange organ.  Around day six of 

incubation, the allantoic sac fuses with the chorion and respiratory function is transferred 

to the blood vessels of the CAM (Baumann and Meuer 1992, Baumann and Dragon 2005). 

Oxygen is important to the developing embryo, but may not be essential during its 

initial development.  Experiments have shown that four day old chick embryos can survive 

in short-term incubation with 1% carbon monoxide (CO) over four hours, but for six day 

old chick embryos mortality to this CO exposure is increased to 30%.  Also, if a major 

blood vessel is ligated for a few hours in three and four day old embryos so that oxygen 

transport is impaired, there is no alteration in oxygen consumption or embryonic 

development.  But when four day old chick embryos are kept under hypoxic conditions 

(13.5% ambient oxygen), their growth is retarded by day six.  Once a closed circulatory 
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system has been established (day 5-6), the chick dependence on O2 is increased (Baumann 

and Dragon 2005).  Other effects of oxygen on RBCs have been extensively studied 

(Khorrami et al. 2008, Phu et al. 1986, Tazawa et al. 1976). 

 

 

Analyzing Angiogenesis 

Angiogenesis can be quantified at the microscopic level (Adair et al. 1994, Strick et 

al. 1991).  Morphological effects on angiogenesis caused by various chemicals can be 

evaluated by observing magnified images of the blood vessels through a microsope.  Pro-

angiogenic chemicals should increase the vascularity of the affected region and one should 

observe an increase in the number of vessels segments, the number of vessel bifurcations, 

the total length of the vessels, and the complexity of the vascular network (i.e., how much 

of the available space is taken up by the new vessels).  Anti-angiogenic chemicals should 

have the opposite effect on these parameters.  Blood vessel growth would be decreased 

with anti-angiogenic chemicals.  Chemicals which are angiogenic-neutral should have no 

effect on these parameters when compared to a similar control region that does not contain 

the chemical in question. 

 

 

Purpose of This Study 

The purpose of this study was to establish a reproducible method to analyze the 

effect of different chemicals on angiogenesis in the chick CAM.  This approach could 
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become a future screening process for how different chemicals would affect angiogenesis 

in the CAM model.  Also, the effect of the presence of an oxygen barrier film patch on 

CAM angiogenesis was evaluated for future investigations of oxygenation through 

measurements of PO2 (partial pressure of oxygen). 

The chemicals used for these experiments are referred to as “potential angiogenic 

factors” throughout this thesis because their effect on angiogenesis was being evaluated.  

These angiogenic factors could either have a pro-angiogenic, anti-angiogenic, or no 

angiogenic effect on new vessel growth in the CAM.  The angiogenic factors tested were 

angiotensin II, captopril, losartan, L-NAME, nitric oxide (through use of the NO donor 

SNAP), acetylcholine, adenosine, and H2O2.  These particular chemicals were chosen for 

testing because of their known involvement in vasomotor responses and their potential 

linkage to blood flow responses following reductions in oxygen supply to oxygen demand. 

The ex ovo chick embryo model system was used because of its simplicity and 

extensive vascular network.  The effect of the angiogenic factors could easily be assessed 

by observing the blood vessels microscopically.  The quantitative assessment of 

vascularity was based on measurements of the number of vessel segments, number of 

vessel bifurcations, total vessel length, and complexity of the vascular network as reliable 

indicators of the degree of angiogenesis. 
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MATERIALS AND METHODS 

 

Chick Chorio-Allantoic Membrane (CAM) Preparation 

Collection and pre-incubation of eggs 

Rhode Island Red fertilized hatching eggs were obtained from a local hatchery 

(Lynn Matz, Mechanicsville, VA).  The eggs and the carton that contained them were 

placed in an insulated box for safe transport to the laboratory.  Once they arrived at the 

laboratory, the eggs were cleaned by wiping them with 70% isopropyl alcohol, removing 

any debris.  The cleaned eggs were then positioned vertically with the larger end up in a 

“pre-incubator” (Pro Series Circulated Air Incubator, Model 4200, Farm Innovators, 

Plymouth, IN, see Figure 4).  At this point, the eggs were considered to be at Day 0 of 

embryonic development.  Temperature in the “pre-incubator” was maintained at 37 ± 1o
C 

with humidity at approximately 60% for ideal incubation conditions (according to the 

Farm Innovators manual).  A water reservoir in the “pre-incubator” was filled with distilled 

water to provide a humid environment; its level was checked and maintained daily. 

 

Ex ovo plating procedure for eggs 

After three days (Day 3) in the “pre-incubator,” all of the eggs were removed one 

by one and placed in a clear, clean egg tray, keeping them in the same vertical position.
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Figure 4.  “Pre-incubator.” Top view of “pre-incubator” containing one dozen eggs. 
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The eggs were then individually sterilized with Betadine (providone-iodine 10%, Purdue 

Frederick, Inc., Stamford, CT), applied liberally to the shell with a cotton ball, and placed 

back into the “pre-incubator.”  To avoid potential contamination of the contents of the eggs 

during the plating procedure, gloves and face masks were worn.  Four eggs at a time were 

removed from the “pre-incubator” for manipulation in the plating procedure.  An 

approximately six inch square piece of plastic film (Kirkland, stretch-tite plastic food wrap, 

Polyvinyl Films, Inc., Sutton, MA) was placed on a plastic ring (four inches in diameter 

and one inch high) and a hammock-shaped well was made to hold the contents of the egg.  

Any of the film that was previously exposed to air was discarded.  An egg was cracked by 

holding its long axis horizontally and bringing it down firmly onto a razor blade which was 

stabilized by securing it to a countertop.  A crack, approximately one centimeter in length 

and located about two-thirds the distance from the top/larger end, was needed for the liquid 

(white of the egg) to start leaking out.  If no liquid appeared, the egg was rotated and 

cracked again; the liquid helped coat the broken shell, minimizing the risk of breaking the 

yolk as it flowed from the shell.  The egg was then held approximately two inches over the 

plastic film hammock so that there was only a short distance the contents had to fall as it 

flowed from the shell.  A thumb was then positioned on each side of the crack and the 

sides of the egg were slowly forced open.  Just before the whole egg shell was about to 

collapse, the bottom of the shell was quickly forced apart to keep the yolk from breaking 

on the sharp edges of the broken shell.  The contents of the egg were allowed to spill into 

the plastic film hammock.  A “hammock” shape was used because it provided a flexible 

cushion for the embryo, thereby reducing the potential for physical harm to the embryo as 
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it was removed from the shell.  After all of the contents of the egg were removed, the shell 

was discarded.  At this stage, the embryo was observed to confirm its viability.  Normally, 

a heartbeat was noticeable in the small embryo when the chick was alive.  If there was no 

heartbeat, no visible embryo, or the yolk had spilled during the plating procedure, the 

embryo was discarded by placing it into a plastic bag and then into a freezer.  If the 

embryo was alive, it was carefully manipulated until the embryo remained centered on top 

of the yolk. 

 Once the embryo had been successfully transferred into the plastic film hammock, 

the film was held against the plastic ring and the whole preparation was picked up and 

placed into a petri dish which had been modified to accommodate the contents of a 

fertilized egg.  This modified petri dish (see Figure 5) had a 30 mm diameter hole drilled 

through the bottom of the dish and a small plastic cup (30 mm diameter x 25 mm height) 

was placed into this hole.  The small cup was fastened to the hole in the petri dish with a 

hot glue gun and the edges were smoothed using #320 sandpaper.  Six small holes (2.0 mm 

in diameter, equally spaced around the perimeter) were punched through its bottom.  These 

holes were used to provide access to the film-encased egg contents when vacuum was 

applied to the cup to coax the yolk into the small cup.  A few drops of K-Y lubricant 

(McNEIL-PPC, Inc, Johnson & Johnson, New Jersey) were applied to the petri dish and 

the cup and spread over their surfaces with a cotton swab to facilitate movement of the 

plastic film-encased yolk into the plastic cup when the vacuum was applied.  A second 

petri dish had a matching hole drilled through it so that it could act as a stand to elevate the 

assembly on the countertop or other solid surface used in the various procedures.   
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Figure 5.  Petri Dish. Modified petri dish with stand and filter paper covered lid. 
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Also, a petri dish lid was modified by drilling five holes (about 5 mm in diameter) in it and 

by gluing a piece of filter paper to the inside of the lid (these were ventilation holes for the 

embryo). 

After the embryo was placed in the petri dish, the edges of the plastic film were 

detached from the plastic ring and the plastic ring was removed.  The edges of the plastic 

film were held and vacuum was applied to the bottom of the small cup.  This forced the 

yolk along with the plastic film into the small cup.  The plastic film hammock was 

manipulated so that the embryo remained on top of the yolk as the yolk was coaxed into 

the cup.  Then 1.2 ml of a penicillin-streptomycin solution (penicillin = 6.67 mg/ml, 

streptomycin = 5 mg/ml) was applied to the white of the egg to prevent bacterial growth 

during further incubation.  This solution was reapplied to the embryos every 3.5 days.  The 

lid of the petri dish was placed on top of the petri dish and this assembly was then placed 

into a sterilized incubator (Model 12-140, Quincy Lab, Inc., Illinois, see Figure 6).  The 

incubator was sterilized with soap and water and 70% isopropyl alcohol before 

introduction of a new batch of plated eggs.  The incubator had been modified by placement 

of a fan for ventilation and a water reservoir to maintain humidity.  Also, a motor with a 

controller was used to gently rock the platform intermittently so that the eggs would 

experience motion periodically.  The motor was set to operate for a period of one minute 

every hour and a half.  Temperature in the incubator was maintained at 37 ± 1 
o
C with 

humidity at approximately 60% for ideal incubation conditions (Dohle 2009).  The 

temperature, humidity, and condensation level within the incubator were recorded each  
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Figure 6.  Incubator 
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day.  The water level of the water reservoir was checked daily and resupplied as needed 

with distilled water. 

 

 

Experimental Protocol 

Preparation of perforated film patches 

 Starting on Day 7 when the CAM first becomes visible, patches of gas barrier 

Krehalon film (Krehalon CB-100, polyvinylidene chloride, 12 μm thick, O2 transmission 

rate = 2.19 cm
3
·ml/100 in

2
·day·atm; Krehalon UK, Ltd., United Kingdom) were placed on 

the developing CAM.  The Krehalon patches were made by first placing Krehalon film 

between two pieces of thin filter paper.  The paper, along with the film, was then cut into 

squares 15 mm on each side. 

 Five holes were placed in each film patch according to the pattern depicted in 

Figure 7.  The holes were made using blunted hypodermic needles.  The needle was dipped 

in 70% isopropyl alcohol prior to making the holes.  The film/paper sandwich was placed 

on a piece of balsa wood and the needle was twisted through the paper and the film until it 

reached the wood to make circular holes.  Residual pieces of paper and film were extruded 

from the inside of the needle using a metal rod which fit inside the needle.  Table 1 shows 

the gauge and outside diameter of the needles that were used to make holes in the film. 
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Table 1.  Needle Gauges and Diameter. 

Needle size 

(gauge)  

Outside diameter 

(mm) 

25  0.5 

20  1.0 

14  2.0 

 

 

 

 

 

Figure 7.  Diagram of Hole Placement in Film Patches. 
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Placement of perforated film patches 

Film patches were placed on the CAM on Day 7, the day after the CAM first 

became visible.  The patches were dipped in 70% isopropyl alcohol and allowed to air dry 

before application to the CAM.  Fine-tipped Sharpie markers were used to place dots of 

different colors onto the dried film to facilitate identification of the transparent film patch 

on the CAM and to visualize the holes under a stereomicroscope.  A black dot was placed 

on the upper left-hand corner, blue on upper right-hand corner, green on lower left-hand 

corner, pink on lower right-hand corner, and an orange dot on top of the hole in the center 

of the film patch in order to uniquely identify the holes once the film patch was placed on 

the CAM.  Using forceps, three film patches were then placed on the CAM of one of the 

embryos.  The exact orientation of the film patches and the distance from the center of the 

embryo were recorded on a data collection sheet (see Appendix A). 

 

Preparation of angiogenic factors 

 The response of vessel growth to several different angiogenic factors was tested on 

the CAM preparation.  These chemicals were prepared in phosphate buffered saline 

solution (PBS) at the concentrations listed in Table 2. 

 

Preparation of alginate beads for delivery of angiogenic factors 

 A 3% solution of alginate (alginic acid sodium salt from brown algase, 

Biochemika, Sigma Aldrich, Norway) in PBS was made.  Several drops of this highly 

viscous solution were then placed onto a microscope slide cover slip using a plastic  
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Table 2. List of Angiogenic Factors. 

Agent Formula Formal Name Conc. 

Adenosine C10H13N5O4  1 mM 

Angiotensin II C50H71N13O12  10 μM 

Captopril C9H15NO3S 

(2S)-1-[(2S)-2-methyl-3-

sulfanylpropanoyl] 

pyrrolidine-2-carboxylic acid 0.2 mg/mL 

Losartan C22H23ClN6O 

(2-butyl-4-chloro-1-{[2'-(1H-

tetrazol-5-yl)biphenyl-4-

yl]methyl}-1H-imidazol-5-

yl)methanol 0.1 mg/ml 

Acetylcholine C7NH16O2
+
  1 mM 

SNAP (NO donor) C7H12N2O4S 
S-Nitroso-N-acetyl-DL-

penicillamine 0.5 mM 

L-NAME C7H15N5O4·HCl 

N5-

[imino(nitroamino)methyl]-

L-ornithine, methyl ester, 

monohydrochloride 1 mM 

H2O2 H2O2  1 mM 

List of angiogenic factors, their formulas, formal name, and concentration in which 

alginate beads were incubated (concentrations were determined from previous applications 

of these chemicals). 
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pipette tip.  Attempts were made to obtain drops of a similar size (~2 mm diameter) and 

shape.  A solution of 10% CaCl2 was then sprayed onto the beads to promote 

polymerization of the alginate.  After about 10 minutes, the cover slips containing the 

beads were placed in distilled water for 20-30 minutes to remove any residual CaCl2.  The 

cover slips and beads were then placed in small weigh boats and 0.5 ml of the angiogenic 

factor was placed onto the cover slip, completely covering the beads.  For the sham bead, 

0.5 ml of PBS was used to cover the bead.  The alginate beads were allowed to soak in the 

angiogenic factor or PBS for one hour.  The coverslip containing the beads was removed 

from the weigh boat and the beads were then carefully placed onto the holes of the 

perforated film patches, one bead per hole.  Three alginate beads with the same angiogenic 

factor were placed on each film patch at holes 1, 3, and 7 (see Figures 7 and 8). The sham 

bead was placed on hole 9.  The middle hole of the film patch, hole 5, did not contain a 

bead, so that the tissue of the CAM below this hole was exposed to the ambient 

atmosphere of the incubator. 

 

 

Collection of Images from CAM through Perforated Film Patches 

 Once the film patch and angiogenic factor had been on the CAM for 24 hours (Day 

8), images were collected (images were again collected after 48 hours (Day 9)).  The 

embryo was removed from the incubator and placed in an insulated “chicken chamber” for 

microscopic observation.  The chamber was made from a styrofoam box with a clear 

plastic lid.  A heating pad and fan inside the chamber maintained similar 
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Figure 8.  CAM Preparation. An example of perforated film patches with beads placed on a 

CAM preparation. 

 



www.manaraa.com

   

 25 

 

 

 

 

 

Figure 9.  Image Collection.  The stereomicroscope setup (left panel) and the "chicken 

chamber" (right panel) used to collect images of the CAM preparation. 
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environmental conditions as in the incubator (see Figure 9).  The stereomicroscope (Nikon, 

SMZ645, 0.5X to 5X zoom range) was outfitted with a digital camera (Philips, model 

3Z2000825, Philips Co.) in one of the eyepiece ports.  The image from the camera was 

displayed on a laptop computer using Microcap software (version 2.0, ESPA Systems Co, 

Ltd., 2006).  A perforated film patch from which images were to be collected was located 

on the CAM preparation and the desired hole in the patch was found using the location and 

specific colors of the dots that had been placed on the film with the Sharpie markers.  The 

focused image was collected at 1X magnification.  After image collection, approximately 

10 μl of the angiogenic factor (distilled water for the sham bead) was applied to the bead in 

order to replenish the agent previously supplied by the bead to the region in the CAM 

under the hole. 

 

 

Image Analysis of Vascular Networks 

 Images at 1X magnification were analyzed using the ImageJ 1.46m software 

platform (Rasband 1997-2011) from the NIH website (National Institutes of Health—

http://imagej.nih.gov/ij, version 1.46m, Java 1.6.0_20 (64-bit)).  This software allowed 

manipulation of the image in order to create a binary image which can be processed by the 

Fractal Analysis plugin of ImageJ (Karperien 1999-2007) 

(http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm, NIH, FracLac_2.5i.3). 
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 A 0.95 mm diameter circle was created over the hole or virtual hole in the film.  

The vessels present in that circle could then be outlined in black using a brush tool (see 

Figure 10).  The number of vessel segments and bifurcations were counted and recorded.   

From there, the Fractal Analysis plugin was used to calculate the number of pixels in the 

foreground of the image (the black outline of the vessels present) by a method known as 

“box counting.”  This method divided the region of interest into a grid of 12 square regions 

and then separated data in the foreground of the square from the background data. The 

number of pixels in the foreground is a measurement of the total length of the vasculature.  

This can be converted into µm by obtaining an image of a calibrated stage micrometer, 

drawing a 1.0 mm long black line, finding the number of foreground pixels along the 1.0 

mm line, and converting this value to µm. 

The complexity of the vascular network (fractal dimension, Df) was also 

determined using the plugin.  Equation 1 shows the equation for Df , the fractal dimension 

of an image:   

Df = log Nε / log ε  [Equation 1] 

where Nε = the number of new parts, ε = the scale (Karperien 1999-2007).  This equation 

compares the number of vessels per square of the grid and assigns it a number 1 ≤ Df ≤ 2.  

In this way, the complexity of the vascular network (i.e., how much space the vascular 

network occupies) is found.  The more complex the network of vessels, the higher the Df 

value (closer to 2) and the less complex the network, the lower the Df value (closer to 1).  

See Appendix B for the detailed ImageJ and Fractal Analysis procedure. 
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Figure 10.  Image Analysis Using ImageJ.  ImageJ was used to trace the outline of the 

vasculature (right panel) from the image collected from the CAM (left panel). 
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Statistical Methods 

Comparisons between the angiogenic factors and the controls were analyzed using 

the two sample analysis (two tailed) Student’s t-test.  Differences were considered 

significant at p < 0.05.  The degree of pro-angiogenesis or anti-angiogensis between the 

factors was not calculated, since the goal of this project was limited to determine whether 

specific chemicals had pro-angiogenic, anti-angiogenic, or no angiogenic effects on the 

CAM.  Values presented in the text, tables, and graphs are the mean ± standard error. 
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RESULTS 

 

 

Determination of Optimum Hole Size for Perforated Film Patch 

In order to determine which size hole would give the best results in terms of 

vessel growth, three Krehalon film patches were placed on a seven-day old CAM 

preparation.  Each film contained five holes of the same diameter (see Fig. 9 in the 

Materials and Methods section).  The diameters of the holes were 0.5 mm, 1.0 mm, and 

2.0 mm, respectively.  Twenty-four hours after placement of the film patches, images of 

the tissue within each of three of the holes (holes 5, 7 and 9 in the square patch) were 

collected and analyzed using ImageJ (aliginate beads were placed on the other two holes, 

1 and 3, and had no influence on the data collected).  The number of vessel segments, 

number of vessel bifurcations, total vessel length, and the complexity of the vascular 

network (Df), along with the standard error for each, are shown in Table 3.  The mean of 

the number of vessel segments for the 0.5, 1.0, and 2.0 mm diameter holes was 17.0 ± 

1.0, 25.3 ± 1.8, and 13.7 ± 2.2, respectively.  The mean of the number of bifurcations was 

7.0 ± 1.0, 11.7 ± 0.9, and 5.3 ± 1.3.  Mean total vessel length was 699.9 ± 67.2, 662.3 ± 

25.6, and 722.4 ± 84.2 µm and the mean complexity of the vessels was 1.313 ± 0.012, 

1.383 ± 0.013, and 1.302 ± 0.030 for the 0.5, 1.0, and 2.0 mm diameter holes.  These 

results are displayed in Figure 11.  It can clearly be seen that the 1.0 mm diameter holes 

gave the most vessel segments and bifurcations and the most complex vascular network.   
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Table 3. Measure of Vascularity for Different Diameter Holes. 

Number of Segments      

Hole Diameter (mm) Hole 5 Hole 7 Hole 9 Mean of Holes 5,7,9 Standard Deviation 

0.5 15 18 18 17.0 ± 1.0 1.7 

1.0 26 22 28 25.3 ± 1.8 3.1 

2.0 18 11 12 13.7 ± 2.2 3.8 

      

Number of Bifurcations      

Hole Diameter (mm) Hole 5 Hole 7 Hole 9 Mean of Holes 5,7,9 Standard Deviation 

0.5 5 8 8 7.0 ± 1.0 1.7 

1.0 12 10 13 11.7 ± 0.9 1.5 

2.0 8 4 4 5.3 ± 1.3 2.3 

      

Vessel Length (µm)      

Hole Diameter (mm) Hole 5 Hole 7 Hole 9 Mean of Holes 5,7,9 Standard Deviation 

0.5 824.1 593.2 682.5 699.9 ± 67.2 116.4 

1.0 658.1 620.3 708.5 662.3 ± 25.6 44.3 

2.0 786.8 555.4 825.1 722.4 ± 84.3 145.9 

      

Complexity (Df)      

Hole Diameter (mm) Hole 5 Hole 7 Hole 9 Mean of Holes 5,7,9 Standard Deviation 

0.5 mm 1.336 1.306 1.296 1.313 ± 0.012 0.021 

1.0 mm 1.400 1.390 1.359 1.383 ± 0.013 0.022 

2.0 mm 1.320 1.242 1.343 1.302 ± 0.030 0.053 

A comparison of the number of segments, number of bifurcations, vessel length, and complexity of 

three different sized holes (0.5, 1.0, and 2.0 mm diameter) placed in the film patch. 
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Figure 11.  Vascularity as a Function of Hole Diameter.  A visual comparison of the (A) number of segments, (B) number of 

bifurcations, (C) total vessel length, and (D) complexity of three different sized holes (0.5, 1.0, and 2.0 mm diameter) placed in 

the film patches.  The legend is shown in Panel D. 
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So this size hole was used for the rest of the experiments, since it should provide the most 

extensive vessel growth. 

 

 

Tests of Chemical Angiogenic Factors 

 After determining that the 1.0 mm diameter holes would give maximal results in 

the parameters to be tested, film patches with five 1.0 mm diameter holes were placed on 

seven-day old CAM preparations.  Aliginate beads which had been incubated in a 

solution of angiogenic factor were placed on holes 1, 3, and 7 of the film patches and a 

sham aliginate bead (incubated only in PBS) was placed on hole 9 (see Figure 9 in the 

Materials and Methods section for hole numbering).  The different angiogenic factors 

tested were Angiotensin II, Captopril, Losartan, L-NAME, H2O2, Acetylcholine, 

Adenosine, and Nitric Oxide (using the NO donor SNAP).  Images of the holes were 

taken on day 8 and day 9 of incubation.  These images were analyzed using the four 

parameters:  number of vessel segments, number of vessel bifurcations, total vessel 

length, and complexity of the vascular network (Df).  The mean value and standard error 

were calculated by combining data from the three holes containing the alginate beads 

incubated in the angiogenic factor for both days 8 and 9.  For the sham bead, the mean 

value and standard error were also calculated by combining data from days 8 and 9.  

Results for each of the factors tested are listed below and are shown in Tables 4-7 and 

Figures 12-15. 
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Number of Vessel Segments 

 The number of vessel segments for the agents tested ranged from 11.3 to 37.0.  

The angiogenic factors which produced statistical significance compared to the sham 

beads were Losartan, SNAP, Adenosine and H2O2.  The mean values of number of vessel 

segments for the angiogenic beads and sham beads for each angiogenic factor are shown 

in Table 4 and Figure 12. 

 

Number of Vessel Bifurcations 

 Table 5 and Figure 13 show the mean values for the number of vessel bifurcations 

for each angiogenic factor.  The range of the number of vessel bifurcations was 4.5-17.8.  

Losartan and Adenosine exhibited significant differences compared to the sham beads. 

 

Total Length of Vessels 

 The range of values of the total length of vessels for alginate beads incubated in 

different angiogenic factors and the sham beads were 569.7-987.3 µm.  Table 6 and 

Figure 14 show the results for this variable.  Significant differences compared to the 

sham beads were found for Angiotensin II, Losartan, SNAP and Adenosine. 

 

Complexity of Vascular Networks 

For the complexity of the vascular network, Table 7 and Figure 15 show the mean 

values for each agent tested.  The range for this parameter was 1.245-1.437.  Losartan, 

SNAP and Adenosine gave significant differences compared to the sham beads.
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Table 4.  Number of Vessel Segments for Each Angiogenic Factor (Days 8 and 9). 

Number of Segments—Days 8 and 9 

Angiogenic Factor Mean results of Days 8 and 9 

Angiotensin II 16.3 ± 4.2 (6) 

Sham 13.0 ± 0.5 (2) 

Captopril 18.0 ± 2.3 (6) 

Sham 17.5 ± 3.5 (2) 

Losartan 11.3 ± 1.1 (6)* 

Sham 23.5 ± 5.5 (2) 

L-NAME 13.7 ± 1.5 (6) 

Sham 12.5 ± 4.5 (2) 

SNAP 37.0 ± 6.6 (6)* 

Sham 23.0 ± 12.0 (2) 

Acetylcholine 17.5 ± 4.2 (6) 

Sham 22.5 ± 0.5 (2) 

Adenosine 20.8 ± 1.9 (6)* 

Sham 31.0 ± 5.0 (2) 

H2O2 18.0 ± 2.7 (6)* 

Sham 11.5 ± 4.5 (2) 

 

Mean number of segments for each angiogenic factor and its corresponding sham bead 

from Days 8 and 9.  The results are presented as mean ± standard error.  The number in 

parentheses indicates how many different beads were included in the mean values.  * 

indicates significance according to Student’s t-test between the angiogenic factor and its 

sham bead. 
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Figure 12.  Graph of the number of vessel segments for the beads containing the angiogenic factor and the sham beads (Day 8 

and 9).  * indicates significance according to Student’s t-test between the angiogenic factor and its sham bead.

* 
* 

* 
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Table 5.  Number of Vessel Bifurcations for Each Angiogenic Factor (Days 8 and 9). 

 

Angiogenic Factor Mean results of Days 8 and 9 

Angiotensin II 6.8 ± 1.3 (6) 

Sham 5.0 ± 1.0 (2) 

Captopril 8.0 ± 1.2 (6) 

Sham 7.0 ± 3.0 (2) 

Losartan 4.5 ± 0.7 (6)* 

Sham 9.5 ± 2.5 (2) 

L-NAME 5.5 ± 0.8 (6) 

Sham 5.5 ± 2.5 (2) 

SNAP 17.8 ± 3.6 (6) 

Sham 11.0 ± 6.0 (2) 

Acetylcholine 7.2 ± 2.4 (6) 

Sham 9.5 ± 0.5 (2) 

Adenosine 9.0 ± 1.0 (6)* 

Sham 14.5 ± 2.5 (2) 

H2O2 7.8 ± 1.5 (6) 

Sham 5.0 ± 3.0 (2) 

 

Mean number of bifurcations for each angiogenic factor and its corresponding sham bead 

from Days 8 and 9.  The results are presented as mean ± standard error.  The number in 

parentheses indicates how many different beads were included in the mean values.  * 

indicates significance according to Student’s t-test between the angiogenic factor and its 

sham bead.
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Figure 13.  Graph of the number of vessel bifurcations for the beads containing the angiogenic factor and the sham beads (Day 

8 and 9).  * indicates significance according to Student’s t-test between the angiogenic factor and its sham bead.

* 

* 
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Table 6.  Total Length of Vessels (µm) for Each Angiogenic Factor (Days 8 and 9). 

Angiogenic Factor 
Mean results of Days 8 

and 9 in µm 

Angiotensin II 678.8 ± 102.5 (6)* 

Sham 765.9 ± 44.2 (2) 

Captopril 807.8 ± 71.9 (6) 

Sham 801.6 ± 209.7 (2) 

Losartan 569.7 ± 37.8 (6)* 

Sham 935.1 ± 144.1 (2) 

L-NAME 630.4 ± 39.4 (6) 

Sham 578.2 ± 107.3 (2) 

SNAP 987.3 ± 107.9 (6)* 

Sham 605.3 ± 52.2 (2) 

Acetylcholine 814.3 ± 104.5 (6) 

Sham 815.3 ± 52.6 (2) 

Adenosine 818.1 ± 36.2 (6)* 

Sham 892.9 ± 39.6 (2) 

H2O2 711.4 ± 56.2 (6) 

Sham 616.2 ± 71.4 (2) 

 

Mean total vessel length (µm) for each angiogenic factor and its corresponding sham 

bead from Days 8 and 9.  The results are presented as mean ± standard error.  The 

number in parentheses indicates how many different beads were included in the mean 

values.  * indicates significance according to Student’s t-test between the angiogenic 

factor and its sham bead.
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Figure 14.  Graph of the length of vessels for the beads containing the angiogenic factor and the sham beads (Day 8 and 9).  * 

indicates significance according to Student’s t-test between the angiogenic factor and its sham bead.

* 

* 

* 

 

* 
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Table 7.  Complexity of Vessels (Df) for Each Angiogenic Factor (Days 8 and 9). 

 

Angiogenic Factor Mean results of Days 8 and 9 

Angiotensin II 1.344 ± 0.040 (6) 

Sham 1.354 ± 0.008 (2) 

Captopril 1.344 ± 0.021 (6) 

Sham 1.340 ± 0.071 (2) 

Losartan 1.245 ± 0.012 (6)* 

Sham 1.364 ± 0.047 (2) 

L-NAME 1.286 ± 0.024 (6) 

Sham 1.282 ± 0.024 (2) 

SNAP 1.437 ± 0.043 (6)* 

Sham 1.331 ± 0.096 (2) 

Acetylcholine 1.365 ±0.034 (6) 

Sham 1.324 ± 0.007 (2) 

Adenosine 1.350 ± 0.018 (6)* 

Sham 1.393 ± 0.004 (2) 

H2O2 1.313 ± 0.033 (6) 

Sham 1.281 ± 0.051 (2) 

 

Mean complexity of the vessels (Df) for each angiogenic factor and its corresponding 

sham bead from Days 8 and 9.  The results are presented as mean ± standard error.  The 

number in parentheses indicates how many different beads were included in the mean 

values.  * indicates significance according to Student’s t-test between the angiogenic 

factor and its sham bead. 
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Figure 15.  Graph of the complexity of the vessels for the beads containing the angiogenic factor and the sham beads (Day 8 

and 9).  * indicates significance according to a Student’s t-test between the angiogenic factor and its sham bead.

* 

* 

* 



www.manaraa.com

   

 43 

Results for “Virtual” Holes 

 Each film patch placed on the CAM also contained a hole in the middle that was 

left open to atmospheric oxygen.  No alginate bead was placed on top of it.  This hole can 

be compared to “virtual” holes in the film patch.  The virtual holes refer to areas of the 

CAM that are covered by the film patch and thus very little oxygen can diffuse through 

the film patch into this area (PO2 under film = 5-10 mmHg, Connery, personal 

communication).  The virtual holes are equidistant from the center of the holes which 

contain the alginate beads (see Figure 9 in the Materials and Methods section for location 

of the virtual holes).  Each film patch contained four virtual holes (holes 2, 4, 6, and 8) 

and one control hole (hole 5).  The data recorded from these holes were averaged over 

two days (Days 8 and 9) and were grouped according to which angiogenic factor was 

present on that specific film patch.  The results for each of these virtual holes (grouped by 

angiogenic factor) are given below and are shown in Tables 8-11 and Figures 16-19. 

 

Number of Vessel Segments 

 The number of vessel segments under “virtual” holes for the various angiogenic 

factors ranged from 14.0 to 42.5.  There was a significant difference between number of 

vessel segments under “virtual” holes compared with the open holes for Angiotensin II, 

Losartan and H2O2.  The mean values of number of vessel segments for the virtual holes 

and control holes for film patches containing specific angiogenic factors are given in 

Table 8 and Figure 16. 
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Number of Vessel Bifurcations 

 Table 9 and Figure 17 show the mean values for the number of vessel bifurcations 

for each virtual hole and control hole.  The range of the number of vessel bifurcations 

was 5.5-21.5.  Angiotensin II, Losartan, SNAP and H2O2 gave significant values. 

  

Total Length of Vessels 

 The range of values for for total length of vessels for the virtual holes and control 

holes were 621.1-1093.0 µm.  Table 10 and Figure 18 show the mean values.  Significant 

differences were found for Losartan and Adenosine. 

  

Complexity of Vascular Networks 

For the complexity of the vascular network, Table 11 and Figure 19 show the 

mean values.  The range for this parameter was 1.282-1.446.  Angiotensin II, Losartan, L-

NAME and Adenosine gave significant results. 
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Table 8.  Number of Vessel Segments for Each Virtual Hole (Days 8 and 9). 

 

Angiogenic Factor Mean results of Days 8 and 9 

Angiotensin II 18.6 ± 2.0 (8)* 

Control 14.0 ± 2.0 (2) 

Captopril 20.9 ± 2.0 (8) 

Control 22.5 ± 1.5 (2) 

Losartan 27.1 ± 3.7 (8)* 

Control 17.0 ± 8.0 (2) 

L-NAME 14.4 ± 2.0 (8) 

Control 16.0 ± 1.0 (2) 

SNAP 34.0 ± 5.9 (8) 

Control 42.5 ± 4.5 (2) 

Acetylcholine 19.8 ± 2.7 (8) 

Control 17.0 ± 3.0 (2) 

Adenosine 30.5 ± 3.2 (8) 

Control 31.5 ± 9.5 (2) 

H2O2 23.6 ±1.4 (8)* 

Control 18.5 ± 1.5 (2) 

 

Mean number of vessel segments for each virtual hole for a film patch containing the 

specific angiogenic factor and its corresponding control hole from Days 8 and 9.  The 

results are presented as mean ± standard error.  The number in parentheses indicates how 

many different holes were included in the mean values.  * indicates significance 

according to Student’s t-test between the means for the virtual holes and their control 

hole.
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Figure 16.  Graph of the number of vessel segments for the virtual holes of each film containing a specific angiogenic factor 

and the control holes (Day 8 and 9).  * indicates significance according to Student’s t-test between the virtual holes and their 

control holes.

* 

* 

* 
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Table 9.  Number of Vessel Bifurcations for Each Virtual Hole (Days 8 and 9). 

 

Angiogenic Factor Mean results of Days 8 and 9 

Angiotensin II 7.9 ± 1.1 (8)* 

Control 5.5 ± 0.5 (2) 

Captopril 9.5 ± 1.1 (8) 

Control 10.0 ± 1.0 (2) 

Losartan 11.8 ± 1.7 (8) * 

Control 7.0 ± 4.0 (2)  

L-NAME 6.0 ± 1.2 (8) 

Control 7.5 ± 0.5 (2) 

SNAP 15.9 ± 3.0 (8) * 

Control 21.5 ± 3.5 (2)  

Acetylcholine 8.4 ± 1.2 (8) 

Control 7.5 ± 1.5 (2) 

Adenosine 13.5 ± 1.3 (8) 

Control 13.5 ± 3.5 (2) 

H2O2 10.4 ± 0.6 (8) * 

Control 8.0 ± 1.0 (2)  

 

Mean number of vessel bifurcations for each virtual hole for a film patch containing the 

specific angiogenic factor and its corresponding control hole from Days 8 and 9.  The 

results are presented as mean ± standard error.  The number in parentheses indicates how 

many different holes were included in the mean values.  * indicates significance 

according to Student’s t-test between the means of the virtual holes and their control hole. 
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Figure 17.  Graph of the number of vessel bifurcations for the virtual holes of each film containing a specific angiogenic factor 

and the control holes (Day 8 and 9).  * indicates significance according to Student’s t-test between the virtual holes and their 

control holes.

* 

* 

* 

* 
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Table 10.  Total Length of Vessels (µm) for Each Virtual Hole (Days 8 and 9). 

 

Angiogenic Factor 
Mean results of Days 8 and 9 

in µm 

Angiotensin II 780.2 ± 35.9 (8) 

Control 754.7 ± 71.3 (2) 

Captopril 852.2 ± 67.0 (8) 

Control 787.6 ± 19.2 (2) 

Losartan 1000.8 ± 99.5 (8)* 

Control 621.1 ± 174.2 (2) 

L-NAME 677.6 ± 40.7 (8) 

Control 675.5 ± 62.8 (2) 

SNAP 1093.0 ± 113.6 (8) 

Control 987.9 ± 88.5 (2) 

Acetylcholine 734.5 ± 59.7 (8) 

Control 733.1 ± 87.8  (2) 

Adenosine 1053.6 ± 59.9 (8)* 

Control 903.1 ± 93.3 (2) 

H2O2 879.7 ± 44.3 (8) 

Control 801.9 ± 108.9 (2) 

 

Mean total vessel length (µm) for each virtual hole for a film patch containing the 

specific angiogenic factor and its corresponding control hole from Days 8 and 9.  The 

results are presented as mean ± standard error.  The number in parentheses indicates how 

many different holes were included in the mean values.  * indicates significance 

according to Student’s t-test between the means of the virtual holes and their control hole. 
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Figure 18.  Graph of the length of the vessels for the virtual holes of each film containing a specific angiogenic factor and the 

control holes (Day 8 and 9).  * indicates significance according to Student’s t-test between the virtual holes and their control 

hole.

* * 
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Table 11.  Complexity of Vessels (Df) for Each Virtual Hole (Days 8 and 9). 

 

Angiogenic Factor Mean results of Days 8 and 9 

Angiotensin II 1.364 ± 0.017 (8)* 

Control 1.315 ± 0.035 (2) 

Captopril 1.340 ± 0.021 (8) 

Control 1.346 ± 0.039 (2) 

Losartan 1.401 ± 0.033 (8)* 

Control 1.325 ± 0.101 (2) 

L-NAME 1.282 ± 0.027 (8)* 

Control 1.338 ± 0.031 (2) 

SNAP 1.434 ± 0.032 (8) 

Control 1.446 ± 0.004 (2) 

Acetylcholine 1.319 ± 0.034 (8) 

Control 1.344 ± 0.046 (2) 

Adenosine 1.418 ± 0.019 (8)* 

Control 1.379 ± 0.044 (2) 

H2O2 1.359 ± 0.015 (8) 

Control 1.359 ± 0.040 (2) 

 

Mean complexity of the vessels (Df) for each virtual hole for a film patch containing the 

specific angiogenic factor and its corresponding control hole from Days 8 and 9.  The 

results are presented as mean ± standard error.  The number in parentheses indicates how 

many different holes were included in the mean values.  * indicates significance 

according to Student’s t-test between the means of the virtual holes and their control hole.
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Figure 19.  Graph of the complexity of the vessels (Df) for the virtual holes of each film containing a specific angiogenic 

factor and the control holes (Day 8 and 9).  * indicates significance according to Student’s t-test between the virtual holes and 

their control holes. 

* 

 

* 

* 

* 
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DISCUSSION 

 

Summary of the Results 

 For the angiogenic beads, significant results for at least one of the four parameters 

(number of vessel segments, number of vessel bifurcations, total vessel length, and 

complexity of vascular network) were found for Angiotensin II, Losartan, SNAP, 

Adenosine, and H2O2.  SNAP and H2O2 gave pro-angiogenic results while Angiotensin 

II, Losartan, and Adenosine were anti-angiogenic.  Analysis of the virtual holes gave 

significant results for Angiotensin II, Losartan, SNAP, Adenosine and H2O2.  The virtual 

holes containing Angiotensin II, Losartan, Adenosine, and H2O2 gave pro-angiogenic 

results while SNAP and L-NAME virtual holes were anti-angiogenic.  A more detailed 

description of the findings can be found below.  

 

 

Summary of the Study 

Square oxygen barrier film patches with five 1 mm holes punched in them were 

positioned on seven day old chick embryos.  Polymerized alginate beads incubated in 

specific angiogenic factors were placed on three of the holes, while a sham bead 

incubated in PBS was placed on one of the holes.  The center hole was left empty to be 
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considered a control hole.  Only one angiogenic factor was associated with a given film 

patch and each embryo contained three film patches. 

After 24 and 48 hours of exposure, images were collected for each of the holes 

containing the beads, the control hole, and also “virtual holes” or areas covered by the 

film and, thus, not exposed to the atmospheric oxygen.  These images were processed and 

analyzed using image analysis software.  The parameters collected included the number 

of vessel segments, the number of bifurcations, the total length of the vessels, and the 

complexity of the vasculature (measured as the fractal dimension).  Comparisons between 

the angiogenic beads and the sham beads could be made.  Also, the results from the 

control holes and the virtual holes could be evaluated.  Significance between these values 

was determined using Student’s t-test.  

If the results for the comparison between the angiogenic beads and the sham 

beads were significant, then it was determined if these results were pro-angiogenic, anti- 

angiogenic, or not angiogenic by noting whether the angiogenic factor gave a response 

for the parameter evaluated which was larger or smaller than the response for the sham 

treatment.  Table 12 shows this analysis.  The angiogenic factors were determined to be 

pro-angiogenic for a given parameter if the angiogenic beads produced a larger value for 

that parameter than the sham beads did.  If the beads containing an angiogenic factor 

produced a smaller value for any of the parameters than the sham beads, then the 

angiogenic factor was determined to be anti-angiogenic based on that parameter.  If there 

was no significant difference between the treated and untreated beads, then the  
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Table 12.  Angiogenesis Analysis for Beads Incubated with Angiogenic Factors. 

Angiogenic Factor 
Number of 

Segments 

Number of 

Bifurcations 

Length of 

Vessels 

Complexity 

of Vessels 

Angiotensin II 0 0 - 0 

Captopril 0 0 0 0 

Losartan - - - - 

L-NAME 0 0 0 0 

SNAP + 0 + + 

Acetylcholine 0 0 0 0 

Adenosine - - - - 

H2O2 + 0 0 0 

 

For each parameter -- the number of vessel segments, the number of vessel bifurcations, 

the total length of the vessels, and the complexity of the vascular network -- the 

angiogenic factors were determined to be either pro-angiogenic (+), anti-angiogenic (-), 

or not angiogenic (0). 
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angiogenic factor was classified as “not angiogenic.”  The same procedure was carried 

out for the control holes compared to the virtual holes (see Table 13). 

 

 

Analysis of Each of the Angiogenic Factors 

Angiotensin II 

 Angiotensin II is known to increase blood pressure by activating its receptor AT1, 

a G-protein coupled receptor (GPCR).  Activation of the AT1 receptor leads to a signaling 

cascade where one of the outcomes is vasoconstriction.  Angiotensin II has been tested on 

CAM preparations and was found to be pro-angiogenic (Ferdinand et al. 1991) in doses 

of 67 ng and 670 ng.  From the results with the beads treated with potential angiogenic 

factors, Angiotensin II appeared not to be pro-angiogenic; for the vessel length parameter 

Angiotensin II gave an anti-angiogenic response.  These different results may have 

occurred because the concentration of Angiotensin II used in the present study (10 µM) 

was too low even though the concentration was much lower in the Ferdinand et al. study.  

The concentration should be increased in subsequent tests. 

 

Captopril 

 Captopril is an angiotensin converting enzyme (ACE) inhibitor used to treat 

hypertension and some cases of congestive heart failure.  Because Captopril inhibits the 

process that converts Angiotensin I to Angiotensin II, it should have the opposite effects 

of Angiotensin II on angiogenesis.  Research has shown Captopril to be a known 
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angiogenesis inhibitor (Qiu et al. 2000) at a dose of 12.5 mg.  In the present study, 

Captopril did not show an angiogenic response.  As with Angiotensin II, the 

concentration of Captopril used (0.2 mg/mL) may not have been high enough to elicit a 

response. 

 

Losartan 

 Losartan is an Angiotensin II receptor antagonist.  Like Captopril, Losartan is 

primarily used to treat hypertension.  It binds to the AT1 receptor thereby preventing the 

action of Angiotensin II.  Thus it should have the opposite effects on angiogenesis as 

Angiotensin II and the same response as Captopril.  Losartan has been found to inhibit 

angiogenesis (Lip 2002).  This was the case for the beads treated with Losartan.  All of 

the parameters gave an anti-angiogenic response. 

 

L-NAME 

 L-NAME is a non-specific nitric oxide synthase (NOS) inhibitor.  When blood 

flow is increased in blood vessels, shear stress is transmitted to the endothelial cells.  This 

force activates eNOS or endothelial nitric oxide synthase located in endothelial cells.  

eNOS then produces nitric oxide which causes dilation of the blood vessels, leading to a 

decrease in the shear stress on the endothelial cells.  L-NAME inhibits eNOS from 

producing nitric oxide and thus inhibits vasodilation activated by shear stress.  L-NAME 

is anti-angiogenic (Ziche et al. 1994) in concentrations of 0.5 g/L.  In the tests involving 
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alginate beads incubated with L-NAME, no angiogenic response was observed.  Again, 

this could have been because the concentration used was too low (1 mM) 

 

SNAP 

 SNAP is a nitric oxide (NO) donor.  Nitric oxide causes vasodilation by activating 

soluble guanylate cyclase which increases the amount of cGMP (cyclic guanosine 

monophosphate) in the smooth muscle cell.  cGMP inhibits calcium entry into the cell 

and activates a cGMP-dependent kinase.  This kinase acts on myosin light chain 

phosphatase which in turn dephosphorylates myosin light chains leading to smooth 

muscle relaxation.  SNAP has been reported to be pro-angiogenic (Ziche et al. 1994).  

Results from the present study indicate that SNAP is pro-angiogenic except for the 

number of vessel bifurcations. 

 

Acetylcholine 

 Acetylcholine binds to muscarinic receptors on endothelial cells and these cells 

can then contribute to angiogenesis by activation of the MAP kinase (ERK) signaling 

pathway.  Acetylcholine should stimulate angiogenesis (Arias et al. 2009).  According to 

the results of the present study, Acetylcholine is not angiogenic.  Higher concentrations 

of Acetylcholine should be examined to see if this agent is pro-angiogenic. 
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Adenosine 

Adenosine (0.2-3.0 mg contained in Elvax polymer pellets) is known to stimulate 

angiogenesis in the CAM preparation under global hypoxic conditions (Dusseau et al. 

1986).  The exact mechanism that causes this effect is not completely understood.  The 

results for the alginate beads incubated with Adenosine indicate that it is anti-angiogenic 

for all four of the vascularity parameters.  These findings are the opposite of what was 

expected.  

 

H2O2 

H2O2 activates a transcription factor (ETS-1) which turns on angiogenic genes 

(Fong 2008).  Previous studies have shown that H2O2 does indeed give pro-angiogenic 

responses (Yasuda et al. 1999) with concentrations of 0.1-10 µM.  Results indicate that 

H2O2 is pro-angiogenic in the number of vessel segments but not angiogenic for the other 

parameters.  Again, perhaps a higher concentration than 1 mM H2O2 is needed to produce 

pro-angiogenic effects for all four of the parameters. 

 

 

Analysis of the Oxygen Barrier Response 

 For Angiotensin II, Losartan, H2O2 and Adenosine, a pro-angiogenic response 

was found in the virtual holes compared to the control holes (Table 13).  An anti-

angiogenic response was found for SNAP (number of vessel bifurcations) and L-NAME 

(complexity).  These responses could either be from the difference in oxygen levels  
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Table 13.  Angiogenesis Analysis of Vascularity in the Virtual Holes for the Various 

Angiogenic Factors. 

Angiogenic Factor 
Number of 

Segments 

Number of 

Bifurcations 

Length of 

Vessels 

Complexity 

of Vessels 

Angiotensin II + + 0 + 

Captopril 0 0 0 0 

Losartan + + + + 

L-NAME 0 0 0 - 

SNAP 0 - 0 0 

Acetylcholine 0 0 0 0 

Adenosine 0 0 + + 

H2O2 + + 0 0 

 

For each parameter -- the number of vessel segments, the number of vessel bifurcations, 

the total length of the vessels, and the complexity of the vascular network -- the 

angiogenic factors were determined to be either pro-angiogenic (+), anti-angiogenic (-), 

or not angiogenic (0). 
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between the open and covered (“virtual”) holes or because of the beads treated with the 

associated angiogenic factor placed on that film patch.   

The diffusion coefficient and the diffusion time for each of the angiogenic factors 

were calculated (see Table 14).  The diffusion coefficient is proportional to 1/(sqrt(MW)), 

where MW is the molecular weight of the angiogenic factor.  Thus, if one takes the 

diffusion coefficient for oxygen in an aqueous medium (D = 1.01 x 10
-5

 cm
2
/s) as a 

reference value, one can estimate the diffusion coefficient for other molecules based on 

their molecular weight.  From this value, the average time to diffuse a distance x can be 

calculated as t = x
2
/2D, where x equals the distance of diffusion and D is the diffusion 

coefficient.  Since the holes containing the alginate beads were 5 mm from the control 

hole, 5 mm was used as the distance of diffusion.  These calculations show that all of the 

angiogenic factors, except H2O2 and Acetylcholine, will take about 10 hours to diffuse 5 

mm.  Thus it is possible that the agents associated with the treated alginate beads could 

influence the control holes in 48 hours.  Also, the angiogenic factors could have an 

influence on the virtual holes in the 24 hours before images were taken. 

 In this case, the differences in angiogenesis may be accounted for by the 

differences in oxygen levels that the holes were exposed to.  Many studies have been 

done on the effects of hypoxia on vessel growth in the CAM.  Fong (2008) and Fraisl et 

al. (2009) discovered a hypoxia-induced angiogenesis mechanism involving HIF-1 

(hypoxia inducible transcription factor 1).  Under hypoxic conditions, the levels of HIF-1 

increase, leading to increased transcription of their target genes which include  
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Table 14.  Diffusion Coefficients and Diffusion Rates for the Angiogenic Factors. 

Angiogenic 

Factor 
Formula 

Molecular 

Weight 

(MW) 

Diffusion 

Coefficient Factor 

(sqrt(32/MW) 

Time (hours) 

to diffuse 5 

mm (t = 

x
2
/2D) 

Angiotensin II C50H71N13O12 1046.18 0.175 19.9 

Captopril C9H15NO3S 217.29 0.384 9.0 

Losartan C22H23ClN6O 422.91 0.275 12.6 

L-NAME C7H15N5O4·HCl 269.70 0.344 10.1 

SNAP C7H12N2O4S 220.30 0.381 9.1 

Nitric Oxide NO 30.01 1.033 3.3 

Acetylcholine C7NH16O2
+
 146.21 0.468 7.4 

Adenosine C10H13N5O4 267.24 0.346 10.0 

H2O2 H2O2 34.01 0.970 3.6 
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erythropoietin and vascular endothelial growth factor (VEGF)-A.  In this way, 

erythropoiesis and angiogenesis is increased.  Stick et al. (1991), Dusseau and Hutchins 

(1989) and Hoper and Jahn (1995) showed that hypoxia stimulates angiogenesis in the 

CAM while hyperoxia inhibits CAM angiogenesis, both in a dose-dependent manner. 

Initial studies in this laboratory have shown that the partial pressure of oxygen 

drops from room air pressure (~150 mmHg) to 10 mmHg under the Krehalon film within 

only 300 µm from the edge of the film (Connery, personal communication).  Because of 

the film patches placed on the CAM, the virtual holes are exposed to much less oxygen 

than the control holes and thus may be considered to be under hypoxic conditions.  Thus 

any increased angiogenesis in the virtual holes compared to the control holes confirms 

the results shown by previous studies.  Conversely the virtual holes which gave an anti-

angiogenic response (SNAP for number of bifurcations and L-NAME for complexity) are 

not consistent with these studies.  It is not known why this response was shown, although 

it is interesting to note that most studies of angiogenesis using the CAM preparation 

employ global hypoxia rather than the very localized hypoxia of this study. 

 

 

Comparison of the Control Holes and the Sham Beads 

 The control holes and the sham beads in this experiment should give similar 

results when compared to each other if PO2 and the chemical environment at these holes 

was similar.  This was the case for all of the results except one.  The total length of the 
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vessels for the film patch containing SNAP gave a significant difference when comparing 

the control holes with those containing sham beads. 

 

 

Use of the CAM Preparation 

 A reliable ex ovo CAM preparation was essential for the performance of these 

experiments.  As is often the case, a number of unsuccessful early attempts were made in 

plating the fertilized eggs before a standard method was produced (see Materials and 

Methods section for the detailed plating procedure).  These efforts led to a reliable and 

reproducible plating procedure with a relatively high rate of success (~80%).  Typically, 

one-third of the embryos would remain viable until day 6 with only one or two embryos 

(out of about 10 successfully plated) surviving past day 10.  

The CAM of the viable embryo became visible around day 6 of incubation.  As 

the embryo further developed, the CAM would surround the yolk and eventually grow 

out farther than the boundary of the yolk.  Figures 20 and 21 show images of CAM 

development collected at days 4-11 of incubation. 

 

 

Perforated Film Patches 

Size of patches 

 The film patches used for these experiments were 15 mm squares.  This size was 

chosen because it was large enough to insert several 1.0 mm diameter holes in the film  
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Figure 20.  Images of Embryonic Development on Days 4-7 of Incubation.  The top left panel shows a 4 day old embryo.  The 

top right panel shows a 5 day old embryo.  The bottom left panel is a 6 day old embryo while the bottom right panel is a 7 day 

old embryo.  The CAM is visible on the 6 and 7 day old embryo.  It is the slightly darker region surrounding the embryo.  An 

example of the film patches that were placed on the embryos can be seen on the 7 day old embryo (bottom right panel; notice 

dark dots in the four corners of the film patches). 
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Figure 21.  Images of Embryonic Development on Days 8-11 of Incubation.  The top left panel shows an 8 day old embryo.  

The top right panel shows a 9 day old embryo.  The bottom left panel shows a 10 day old embryo while the bottom right panel 

shows an 11 day old embryo.  The CAM is visible on all of the images although it is easier to see on the 9-11 day embryos.  It 

is the vascular network that is growing away from the yolk.  
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without any interactions between the holes.  The holes were spaced at least 5 mm apart 

from each other and 5 mm away from the edge of the film patch.  Also, the film patch 

needed to be small enough so that it did not cover the entire embryo.  Covering the entire  

embryo would kill the embryo because only a small amount of oxygen would be able to 

diffuse through the film to the embryo. 

 

Hole size 

 The 1.0 mm diameter hole size was chosen because of the results obtained from the 

0.5, 1.0 and 2.0 mm diameter hole size experiments (see Figure 11 and Table 3 in Results).  

The 1.0 mm diameter holes gave the highest values in the number of segments, number of 

bifurcations, and complexity of the vascular networks.  Other studies have shown that 

small hole sizes (≤1.0 mm diameter) are ideal for looking at how chemicals affect 

angiogenesis (Jeong et al. 2011). 

 

Number of patches per CAM 

 Three film patches were placed on each CAM equally spaced from each other.  

There were approximately 20-30 mm of space between the centers of the film patches.  

This was needed to insure that the angiogenic factors on each of the film patches would 

have no diffusive interactions with each other.  Also, only one angiogenic factor was tested 

per film patch.  Attempts were made to cover ≤ 20% of the CAM so that the embryo might 

still have access to an adequate oxygen supply.  It is speculated that covering > 20% may 

lead to increased mortality of the embryos. 
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Film composition 

 The Krehalon film (polyvinylidene chloride) used to make the film patches is used 

to wrap food.  Thus it has very low toxicity.  It is 12 μm thick and its oxygen transmission 

rate is 2.19 cm
3
·ml/100 in

2
·day·atm.  

 

 

Image Collection and Analysis 

 Images of the vessels were collected using a stereomicroscope.  This was not ideal 

since it was difficult to determine if the blood vessels were from the CAM or the vitelline 

membrane.  Transillumination image acquisition would have given better images, but the 

dense yolk prevented this method from being used due to low light transmission.  Also by 

using the stereomicroscope, it was more difficult to obtain a sharp, clear image because 

there is no fine focus adjustment knob.  Blurry images also occurred because the embryo’s 

heart beat caused the whole embryo to move periodically. 

 The image analysis depended on the quality of images collected from the 

stereomicroscope.  Depending on how clear the images were, the vessels that were visible 

could be traced by hand with a black brush tool and later analyzed using Frac_Lac 

software. 

 Four parameters were used to quantify angiogenesis.  They were: the number of 

vessel segments, the number of vessel bifurcations, the total vessel length, and the 

complexity of the vascular network.  All of these parameters can be used together or 

separately to show differences in angiogenesis.  Based on our limited experience, the best 
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parameter to use individually would be the total length of the vessels, since it appeared to 

be the most sensitive parameter tested. 

 

 

Summary 

 Because this was the first time chick embryos were used as a model system in this 

laboratory, many initial pilot studies had to be carried out.  Through this study, a 

systematic method for ex ovo plating and incubating chick embryos was established.  Also, 

a unique way to apply angiogenic factors was accomplished by making “beads” of 

polymerized alginate and incubating the beads with the angiogenic factors.  The alginate 

used is non-toxic and commonly used in the food industry.  This method of using alginate 

beads was adapted from Jeong et al. (2011) where, instead of using alginate beads, a 

permeable film was manufactured and incubated with the desired chemicals and holes were 

punched into the film.  The effect of oxygen on angiogenesis in the CAM was studied by 

placing film patches with holes on top of the developing CAM and making comparisons 

with virtual holes. 

From the methods used in these experiments, a potential screening process for 

determining how chemicals will impact angiogenesis using the CAM model was 

established for future use. 
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Future Studies 

 In the future, many different studies can be done with this CAM preparation.  As a 

followup to these studies, the same angiogenic factors could be re-tested at different 

concentrations and on many more film patches.  Other angiogenic factors such as 

superoxide anion (using SOTS-1, a superoxide donor), apocynin (an NAD(P)H oxidase 

inhibitor), or carbon monoxide could be used to test their effects on angiogenesis.  The 

CAM preparation could also be used to study PO2 profiles near blood vessels. 
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Data Collection Sheet: CAM--Image analysis Image Collection 1 Image Collection 2 

Patch Hole 

Hole 

Diameter 

(mm) 

Distance to 

embryo 

center (mm) 

Chemical 

applied 
Conc. Date Time Saved As Comments Date Time Saved As Comments 

A 1                         

  2                         

  3                         

  4                         

  5                         

  6                         

  7                         

  8                         

  9                         

B 1                         

  2                         

  3                         

  4                         

  5                         

  6                         

  7                         

  8                         

  9                         

C 1                         

  2                         

  3                         

  4                         

  5                         

  6                         
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  7                         

  8                         

  9                         

D 1                         

  2                         

  3                         

  4                         

  5                         

  6                         

  7                         

  8                         

  9                         

E 1                         

  2                         

  3                         

  4                         

  5                         

  6                         

  7                         

  8                         

  9                         
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APPENDIX B 

 

 

 

Image J procedure 

(4/23/12 HH) 

 

Open Image J 

Open Saved image (Fileopensaved image) 

Split color channels (Imagecolorsplit channels) 

Keep green channel open. Close blue and red channels.  

Use the oval tool to make a circle that is 950 pixels wide and 950 pixels high by adjusting 

the boxes on yellow outline 

Position the circle around the hole in the patch or use on a virtual hole 

Crop the circle (Imagecrop) 

Adjust the brightness of the image (Imageadjustbrightness/contrast) 

Move minimum to right until vessels become darker and clearer (maximum should 

be all the way to the right) 

Trace vessels with brush tool (black (color—0,0,0), brush width = 10 pixels). Can go to 

editundo to erase last step 

Increase mininium and trace revealed vessels 

Get rid of any lines outside the circle (Editclear outside) 

Double click on the color picker and make sure the color on the bottom left is black 

(0,0,0) and the color on the bottom right is white (255,255,255) and that the black 

rectangle is completely showing 

Obtain a white background with the black trace shown by reducing the maximum on the 

brightness/contrast all the way to the left and pressing Apply 

Make image binary (Processbinarymake binary) 

Save image (Filesave astiff filename image) 

Count # of bifurcations (marking with brush spots to tract) 

Count # of segments 

For complexity open FracLac (PluginsFractal AnalysisFracLac_) 

Select Standard box count 

Use default box settings (minimum size = 2 pixels, maximum box size = 45% of 

ROI, 12 grid positions, show data for each grid). Press ok 

If image is still open just select scan image or Roi and the scan will start. If image is not 

open go to Select filesopen image and scan will start (see the progress of the scan 

on the bottom of the ImageJ tab). 
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Wait for scan to finish 

Close Data window 

Look at FracLac_2.5i.3 Box count window 

Record data collected (foreground pixels and mean ɅD) 

Complexity = mean ɅD 
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